3.3.64 \(\int \frac {\sec ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx\) [264]

Optimal. Leaf size=156 \[ \frac {(5 A+3 B) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(A-B) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {(5 A+3 B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}} \]

[Out]

-1/4*(A-B)*sec(d*x+c)^(5/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(5/2)+1/16*(5*A+3*B)*sec(d*x+c)^(3/2)*sin(d*x+c)/a/d
/(a+a*sec(d*x+c))^(3/2)+1/32*(5*A+3*B)*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x+c)
)^(1/2))/a^(5/2)/d*2^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.18, antiderivative size = 156, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {4097, 3895, 3893, 212} \begin {gather*} \frac {(5 A+3 B) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}+\frac {(5 A+3 B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^(3/2)*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

((5*A + 3*B)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2
]*a^(5/2)*d) - ((A - B)*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) + ((5*A + 3*B)*Sec[c
 + d*x]^(3/2)*Sin[c + d*x])/(16*a*d*(a + a*Sec[c + d*x])^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3893

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*b*(d/
(a*f)), Subst[Int[1/(2*b - d*x^2), x], x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 3895

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[b*d*Co
t[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(a*f*(2*m + 1))), x] + Dist[d*((m + 1)/(b*(2*m + 1
))), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && E
qQ[a^2 - b^2, 0] && EqQ[m + n, 0] && LtQ[m, -2^(-1)] && IntegerQ[2*m]

Rule 4097

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(
2*m + 1))), x] + Dist[(a*A*m + b*B*(m + 1))/(a^2*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])
^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0
] && LeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\sec ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx &=-\frac {(A-B) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {(5 A+3 B) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx}{8 a}\\ &=-\frac {(A-B) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {(5 A+3 B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {(5 A+3 B) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx}{32 a^2}\\ &=-\frac {(A-B) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {(5 A+3 B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}-\frac {(5 A+3 B) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{16 a^2 d}\\ &=\frac {(5 A+3 B) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(A-B) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {(5 A+3 B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.69, size = 106, normalized size = 0.68 \begin {gather*} \frac {\cos \left (\frac {1}{2} (c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x) \left ((5 A+3 B) \tanh ^{-1}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^4\left (\frac {1}{2} (c+d x)\right )+\frac {1}{2} (A+7 B+(5 A+3 B) \cos (c+d x)) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{4 d (a (1+\sec (c+d x)))^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]^(3/2)*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(Cos[(c + d*x)/2]*Sec[c + d*x]^(5/2)*((5*A + 3*B)*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2]^4 + ((A + 7*B + (
5*A + 3*B)*Cos[c + d*x])*Sin[(c + d*x)/2])/2))/(4*d*(a*(1 + Sec[c + d*x]))^(5/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(349\) vs. \(2(131)=262\).
time = 7.98, size = 350, normalized size = 2.24

method result size
default \(-\frac {\left (-1+\cos \left (d x +c \right )\right )^{2} \left (5 A \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}-5 A \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sin \left (d x +c \right ) \cos \left (d x +c \right )+3 B \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}-3 B \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sin \left (d x +c \right ) \cos \left (d x +c \right )-4 A \cos \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}-5 A \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sin \left (d x +c \right )+4 B \cos \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}-3 B \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sin \left (d x +c \right )-A \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}-7 B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right ) \left (\frac {1}{\cos \left (d x +c \right )}\right )^{\frac {3}{2}}}{16 d \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )^{5} a^{3}}\) \(350\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/16/d*(-1+cos(d*x+c))^2*(5*A*cos(d*x+c)^2*(-2/(1+cos(d*x+c)))^(1/2)-5*A*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x
+c)))^(1/2))*sin(d*x+c)*cos(d*x+c)+3*B*cos(d*x+c)^2*(-2/(1+cos(d*x+c)))^(1/2)-3*B*arctan(1/2*sin(d*x+c)*(-2/(1
+cos(d*x+c)))^(1/2))*sin(d*x+c)*cos(d*x+c)-4*A*cos(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2)-5*A*arctan(1/2*sin(d*x+c)*
(-2/(1+cos(d*x+c)))^(1/2))*sin(d*x+c)+4*B*cos(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2)-3*B*arctan(1/2*sin(d*x+c)*(-2/(
1+cos(d*x+c)))^(1/2))*sin(d*x+c)-A*(-2/(1+cos(d*x+c)))^(1/2)-7*B*(-2/(1+cos(d*x+c)))^(1/2))*(a*(1+cos(d*x+c))/
cos(d*x+c))^(1/2)*cos(d*x+c)^2*(1/cos(d*x+c))^(3/2)/(-2/(1+cos(d*x+c)))^(1/2)/sin(d*x+c)^5/a^3

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 87207 vs. \(2 (131) = 262\).
time = 23.81, size = 87207, normalized size = 559.02 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

1/32*((4*(3*sin(3/2*d*x + 3/2*c) + 5*sin(7/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 3*sin(5/3*
arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 5*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3
/2*c))))*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 40*(2*sin(3*d*x + 3*c) + 3*sin(4/3*arc
tan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*
c))))*cos(7/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 24*(2*sin(3*d*x + 3*c) + 3*sin(4/3*arctan
2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))
))*cos(5/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 24*(3*sin(3/2*d*x + 3/2*c) - 5*sin(1/3*arcta
n2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))
+ 16*(3*sin(3/2*d*x + 3/2*c) - 5*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*cos(2/3*arctan2
(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 5*(16*cos(3*d*x + 3*c)^2 + 2*(4*cos(3*d*x + 3*c) + 6*cos(4/3*a
rctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/
2*c))) + 1)*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + cos(8/3*arctan2(sin(3/2*d*x + 3/2*c
), cos(3/2*d*x + 3/2*c)))^2 + 12*(4*cos(3*d*x + 3*c) + 4*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3
/2*c))) + 1)*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 36*cos(4/3*arctan2(sin(3/2*d*x + 3
/2*c), cos(3/2*d*x + 3/2*c)))^2 + 8*(4*cos(3*d*x + 3*c) + 1)*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x
 + 3/2*c))) + 16*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 16*sin(3*d*x + 3*c)^2 + 4*(2
*sin(3*d*x + 3*c) + 3*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sin(2/3*arctan2(sin(3/2
*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*sin(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + sin(8/3*
arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 48*(sin(3*d*x + 3*c) + sin(2/3*arctan2(sin(3/2*d*x +
3/2*c), cos(3/2*d*x + 3/2*c))))*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 36*sin(4/3*arct
an2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 32*sin(3*d*x + 3*c)*sin(2/3*arctan2(sin(3/2*d*x + 3/2*c),
 cos(3/2*d*x + 3/2*c))) + 16*sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 8*cos(3*d*x + 3*
c) + 1)*log(cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(1/3*arctan2(sin(3/2*d*x + 3/2
*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) - 5*(16*co
s(3*d*x + 3*c)^2 + 2*(4*cos(3*d*x + 3*c) + 6*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*
cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1)*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/
2*d*x + 3/2*c))) + cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 12*(4*cos(3*d*x + 3*c) + 4
*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1)*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3
/2*d*x + 3/2*c))) + 36*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 8*(4*cos(3*d*x + 3*c)
+ 1)*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 16*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), c
os(3/2*d*x + 3/2*c)))^2 + 16*sin(3*d*x + 3*c)^2 + 4*(2*sin(3*d*x + 3*c) + 3*sin(4/3*arctan2(sin(3/2*d*x + 3/2*
c), cos(3/2*d*x + 3/2*c))) + 2*sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*sin(8/3*arctan2(s
in(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + sin(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 +
 48*(sin(3*d*x + 3*c) + sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*sin(4/3*arctan2(sin(3/2*
d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 36*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 32*
sin(3*d*x + 3*c)*sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 16*sin(2/3*arctan2(sin(3/2*d*x
 + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 8*cos(3*d*x + 3*c) + 1)*log(cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/
2*d*x + 3/2*c)))^2 + sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sin(1/3*arctan2(sin(3/
2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) - 48*cos(3/2*d*x + 3/2*c)*sin(3*d*x + 3*c) + 80*cos(1/3*arctan2(si
n(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(3*d*x + 3*c) + 48*cos(3*d*x + 3*c)*sin(3/2*d*x + 3/2*c) - 4*(3*
cos(3/2*d*x + 3/2*c) + 5*cos(7/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 3*cos(5/3*arctan2(sin(
3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 5*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*sin
(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 20*(4*cos(3*d*x + 3*c) + 6*cos(4/3*arctan2(sin(3/2
*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1)*si
n(7/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 12*(4*cos(3*d*x + 3*c) + 6*cos(4/3*arctan2(sin(3/
2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*cos(...

________________________________________________________________________________________

Fricas [A]
time = 2.25, size = 498, normalized size = 3.19 \begin {gather*} \left [\frac {\sqrt {2} {\left ({\left (5 \, A + 3 \, B\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (5 \, A + 3 \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (5 \, A + 3 \, B\right )} \cos \left (d x + c\right ) + 5 \, A + 3 \, B\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + \frac {4 \, {\left ({\left (5 \, A + 3 \, B\right )} \cos \left (d x + c\right )^{2} + {\left (A + 7 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, -\frac {\sqrt {2} {\left ({\left (5 \, A + 3 \, B\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (5 \, A + 3 \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (5 \, A + 3 \, B\right )} \cos \left (d x + c\right ) + 5 \, A + 3 \, B\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) - \frac {2 \, {\left ({\left (5 \, A + 3 \, B\right )} \cos \left (d x + c\right )^{2} + {\left (A + 7 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[1/64*(sqrt(2)*((5*A + 3*B)*cos(d*x + c)^3 + 3*(5*A + 3*B)*cos(d*x + c)^2 + 3*(5*A + 3*B)*cos(d*x + c) + 5*A +
 3*B)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x
+ c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 4*((5*A + 3*B)*cos(d*x +
 c)^2 + (A + 7*B)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3*
d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d), -1/32*(sqrt(2)*((5*A + 3*B)*cos(d*x
 + c)^3 + 3*(5*A + 3*B)*cos(d*x + c)^2 + 3*(5*A + 3*B)*cos(d*x + c) + 5*A + 3*B)*sqrt(-a)*arctan(sqrt(2)*sqrt(
-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) - 2*((5*A + 3*B)*cos(d*x + c)
^2 + (A + 7*B)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3*d*c
os(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)]

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))**(5/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3010 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sec(d*x + c)^(3/2)/(a*sec(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B/cos(c + d*x))*(1/cos(c + d*x))^(3/2))/(a + a/cos(c + d*x))^(5/2),x)

[Out]

int(((A + B/cos(c + d*x))*(1/cos(c + d*x))^(3/2))/(a + a/cos(c + d*x))^(5/2), x)

________________________________________________________________________________________